An idea introduced by Warren Buffett and Charles Munger in relation to investing: each individual tends to have an area or areas in which they really, truly know their stuff, their area of special competence. Areas not inside that circle are problematic because not only are we ignorant about them, but we may also be ignorant of our own ignorance. Thus, when we're making decisions, it becomes important to define and attend to our special circle, so as to act accordingly.
In all human systems and most complex systems, the second layer of effects often dwarfs the first layer, yet often goes unconsidered. In other words, we must consider that effects have effects. Second-order thinking is best illustrated by the idea of standing on your tiptoes at a parade: Once one person does it, everyone will do it in order to see, thus negating the first tiptoer. Now, however, the whole parade audience suffers on their toes rather than standing firmly on their whole feet.
“The imitation of the operation of a real-world process or system over time.” (related: Queuing theory — “the mathematical study of waiting lines, or queues.”)
A deepity is a proposition that seems both important and true—and profound—but that achieves this effect by being ambiguous. On one reading it is manifestly false, but it would be earth-shaking if it were true; on the other reading it is true but trivial. The unwary listener picks up the glimmer of truth from the second reading, and the devastating importance from the first reading, and thinks, Wow! That’s a deepity. Example: Love is just a word. “love” is an English word, but just a word, not a sentence, for example.
“By taking the overall system as well as its parts into account systems thinking is designed to avoid potentially contributing to further development of unintended consequences.” (related: causal loop diagrams; stock and flow; Le Chatelier’s principle, hysteresis — “the time-based dependence of a system’s output on present and past inputs.”; “Can’t see the forest for the trees.”)
"What a man wishes, he also believes. Similarly, what we believe is what we choose to see. This is commonly referred to as the confirmation bias. It is a deeply ingrained mental habit, both energy-conserving and comfortable, to look for confirmations of long-held wisdom rather than violations. Yet the scientific process – including hypothesis generation, blind testing when needed, and objective statistical rigor – is designed to root out precisely the opposite, which is why it works so well when followed. The modern scientific enterprise operates under the principle of falsification: A method is termed scientific if it can be stated in such a way that a certain defined result would cause it to be proved false. Pseudo-knowledge and pseudo-science operate and propagate by being unfalsifiable – as with astrology, we are unable to prove them either correct or incorrect because the conditions under which they would be shown false are never stated."- Shane Parrish “The tendency to search for, interpret, favor, and recall information in a way that confirms one’s preexisting beliefs or hypotheses, while giving disproportionately less consideration to alternative possibilities.” (related: cognitive dissonance)" - Gabriel Weinberg “It is the peculiar and perpetual error of the human understanding to be more moved and excited by affirmatives than by negatives.” — Francis Bacon
“A wide range of cognitive biases that influence the responses of participants away from an accurate or truthful response.”
“The study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs.”
"In many fields—not just philosophy—there are controversies that seem never-ending and partly artifactual: people are talking past one another and not making the necessary effort to communicate effectively. When experts talk to experts, whether they are in the same discipline or not, they always err on the side of under-explaining. The reason is not far to seek: to overexplain something to a fellow expert is a very serious insult—“Do I have to spell it out for you?”—and nobody wants to insult a fellow expert. Solution for this problem: Have all experts present their views to a small audience of curious nonexperts (here at Tufts I have the advantage of bright undergraduates) while the other experts listen in from the sidelines. They don’t have to eavesdrop; this isn’t a devious suggestion. On the contrary, everybody can and should be fully informed that the point of the exercise is to make it comfortable for participants to speak in terms that everybody will understand. By addressing their remarks to the undergraduates (the decoy audience), speakers need not worry at all about insulting the experts because they are not addressing the experts. (I suppose they might worry about insulting the undergraduates, but that’s another matter.) When all goes well, expert A explains the issues of the controversy to the undergraduates while expert B listens. At some point B’s face may light up. “So that’s what you’ve been trying to say! Now I get it.”"
“The selection of individuals, groups or data for analysis in such a way that proper randomization is not achieved, thereby ensuring that the sample obtained is not representative of the population intended to be analyzed.” (related: sampling bias)
“A very common continuous probability distribution…Physical quantities that are expected to be the sum of many independent processes (such as measurement errors) often have distributions that are nearly normal.” (related: central limit theorem)
“A systematic approach to estimating the strengths and weaknesses of alternatives that satisfy transactions, activities or functional requirements for a business.” (related: net present value — “a measurement of the profitability of an undertaking that is calculated by subtracting the present values of cash outflows (including initial cost) from the present values of cash inflows over a period of time.”, discount rate)
“Systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.” (related: reproducibility) - Gabriel Weinberg "The scientific method is a body of techniques for investigating phenomena, acquiring new knowledge, or correcting and integrating previous knowledge. To be termed scientific, a method of inquiry is commonly based on empirical or measurable evidence subject to specific principles of reasoning.The Oxford Dictionaries Online defines the scientific method as "a method or procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses". Experiments need to be designed to test hypotheses. Experiments are an important tool of the scientific method." - Wikipedia (James Clear)
Rathering is a way of sliding you swiftly and gently past a false dichotomy. The general form of a rathering is “It is not the case that blahblahblah, as orthodoxy would have you believe; it is rather that suchandsuchandsuch—which is radically different.” Some ratherings are just fine; you really must choose between the two alternatives on offer; in these cases, you are not being offered a false, but rather a genuine, inescapable dichotomy. But some ratherings are little more than sleight of hand, due to the fact that the word “rather” implies—without argument—that there is an important incompatibility between the claims flanking it.
"When you’re reading or skimming argumentative essays, especially by philosophers, here is a quick trick that may save you much time and effort, especially in this age of simple searching by computer: look for “surely” in the document, and check each occurrence. Not always, not even most of the time, but often the word “surely” is as good as a blinking light locating a weak point in the argument, a warning label about a likely boom crutch. Why? Because it marks the very edge of what the author is actually sure about and hopes readers will also be sure about. (If the author were really sure all the readers would agree, it wouldn’t be worth mentioning.) "
“A state of allocation of resources in which it is impossible to make any one individual better off without making at least one individual worse off…A Pareto improvement is defined to be a change to a different allocation that makes at least one individual better off without making any other individual worse off, given a certain initial allocation of goods among a set of individuals.”
A technique popularized by Einstein, the thought experiment is a way to logically carry out a test in one’s own head that would be very difficult or impossible to perform in real life. With the thought experiment as a tool, we can solve problems with intuition and logic that could not be demonstrated physically, as with Einstein imagining himself traveling on a beam of light in order to solve the problem of relativity. - Shane Parrish “considers some hypothesis, theory, or principle for the purpose of thinking through its consequences.” (related: counterfactual thinking) - Gabriel Weinberg'
Just as you should keep a sharp eye out for “surely,” you should develop a sensitivity for rhetorical questions in any argument or polemic. Why? Because, like the use of “surely,” they represent an author’s eagerness to take a short cut. A rhetorical question has a question mark at the end, but it is not meant to be answered. Whenever you see a rhetorical question, try—silently, to yourself—to give it an unobvious answer.
The crowbar of rational inquiry, the great lever that enforces consistency, is reductio ad absurdum—literally, reduction (of the argument) to absurdity. You take the assertion or conjecture at issue and see if you can pry any contradictions (or just preposterous implications) out of it. If you can, that proposition has to be discarded or sent back to the shop for retooling.
“A variable that is not in itself directly relevant, but that serves in place of an unobservable or immeasurable variable. In order for a variable to be a good proxy, it must have a close correlation, not necessarily linear, with the variable of interest.” (related: revealed preference; Proxy War — “A conflict between two nations where neither country directly engages the other.”)
“A first principle is a basic, foundational, self-evident proposition or assumption that cannot be deduced from any other proposition or assumption.” (related: dimensionality reduction; orthogonality; “Reasonable minds can disagree” if underlying premises differ.)
The unknowable human world is dominated by probabilistic outcomes, as distinguished from deterministic ones. Although we cannot predict the future with great certainty, we are wise to ascribe odds to more and less probable events. We do this every day unconsciously as we cross the street and ascribe low, yet not negligible, odds of being hit by a car.
The USCB ecologist/economist Garrett Hardin once said that “The scientific mind is not closed: it is merely well-guarded by a conscientious and seldom sleeping gatekeeper.” The way it does that is with the concept of the default status: The “resting position” of common sense, whereby the burden of proof falls on assertions to the contrary. Given the problem of opportunity costs and limited time and energy, a default status is nearly always necessary to avoid wasting time. Examples include the laws of thermodynamics, the law of natural selection, and the incentive-caused bias.
How to compose a successful critical commentary: 1. You should attempt to re-express your target’s position so clearly, vividly, and fairly that your target says, “Thanks, I wish I’d thought of putting it that way.” 2. You should list any points of agreement (especially if they are not matters of general or widespread agreement). 3. You should mention anything you have learned from your target. 4. Only then are you permitted to say so much as a word of rebuttal or criticism. One immediate effect of following these rules is that your targets will be a receptive audience for your criticism: you have already shown that you understand their positions as well as they do, and have demonstrated good judgment (you agree with them on some important matters and have even been persuaded by something they said).
"Sturgeon’s Law is usually put a little less decorously: Ninety percent of everything is crap. Ninety percent of experiments in molecular biology, 90 percent of poetry, 90 percent of philosophy books, 90 percent of peer-reviewed articles in mathematics—and so forth—is crap. Is that true? Well, maybe it’s an exaggeration, but let’s agree that there is a lot of mediocre work done in every field...." "Now, in order not to waste your time and try our patience, make sure you concentrate on the best stuff you can find, the flagship examples extolled by the leaders of the field, the prizewinning entries, not the dregs."
"Harder to trace in its origin, Hanlon’s Razor states that we should not attribute to malice that which is more easily explained by stupidity. In a complex world, this principle helps us avoid extreme paranoia and ideology, often very hard to escape from, by not generally assuming that bad results are the fault of a bad actor, although they can be. More likely, a mistake has been made." - Shane Parrish “Never attribute to malice that which is adequately explained by carelessness.” (related: fundamental attribution error — “ the tendency for people to place an undue emphasis on internal characteristics of the agent (character or intention), rather than external factors, in explaining another person’s behavior in a given situation.”) - Gabriel Weinberg
Mr. Market was introduced by the investor Benjamin Graham in his seminal book The Intelligent Investor to represent the vicissitudes of the financial markets. As Graham explains, the markets are a bit like a moody neighbor, sometimes waking up happy and sometimes waking up sad – your job as an investor is to take advantage of him in his bad moods and sell to him in his good moods. This attitude is contrasted to an efficient-market hypothesis in which Mr. Market always wakes up in the middle of the bed, never feeling overly strong in either direction.
“A process of analyzing possible future events by considering alternative possible outcomes.” (related: “Skate to where the puck is going.”; black swan theory — “a metaphor that describes an event that comes as a surprise, has a major effect, and is often inappropriately rationalized after the fact with the benefit of hindsight.”)
The map of reality is not reality itself. If any map were to represent its actual territory with perfect fidelity, it would be the size of the territory itself. Thus, no need for a map! This model tells us that there will always be an imperfect relationship between reality and the models we use to represent and understand it. This imperfection is a necessity in order to simplify. It is all we can do to accept this and act accordingly.
"The process in which inconvenient facts are whisked under the rug by intellectually dishonest champions of one theory or another."
"Jootsing stands for “jumping out of the system.” This is an important tactic not just in science and philosophy, but also in the arts. Creativity, that ardently sought but only rarely found virtue, often is a heretofore unimagined violation of the rules of the system from which it springs. It might be the system of classical harmony in music, the rules for meter and rhyme in sonnets (or limericks, even), or the “canons” of taste or good form in some genre of art. Or it might be the assumptions and principles of some theory or research program. Being creative is not just a matter of casting about for something novel—anybody can do that, since novelty can be found in any random juxtaposition of stuff—but of making the novelty jump out of some system, a system that has become somewhat established, for good reasons."
Named after the friar William of Ockham, Occam’s Razor is a heuristic by which we select among competing explanations. Ockham stated that we should prefer the simplest explanation with the least moving parts: it is easier to falsify (see: Falsification), easier to understand, and more likely, on average, to be correct. This principle is not an iron law but a tendency and a mindset: If all else is equal, it’s more likely that the simple solution suffices. Of course, we also keep in mind Einstein’s famous idea (even if apocryphal) that “an idea should be made as simple as possible, but no simpler.” - Shane Parrish “Among competing hypotheses, the one with the fewest assumptions should be selected.” (related: conjunction fallacy, overfitting, “when you hear hoofbeats, think of horses not zebras.”) - Gabriel Weinberg "Don’t concoct a complicated, extravagant theory if you’ve got a simpler one (containing fewer ingredients, fewer entities) that handles the phenomenon just as well. If exposure to extremely cold air can account for all the symptoms of frostbite, don’t postulate unobserved “snow germs” or “arctic microbes.” Kepler’s laws explain the orbits of the planets; we have no need to hypothesize pilots guiding the planets from control panels hidden under the surface." - Daniel Dennett
“Changes that the act of observation will make on a phenomenon being observed.” (related: Schrödinger’s cat)